

Local Electricity Sharing

Open source modelling software overview

Overview

- 'Local electricity sharing scheme', a definition
- How it works
 - Energy flows and allocation rules
 - Financial flows
 - Usage priorities
- Case study: Byron Bay Arts and Industrial Estate
- Proposed updates

Local electricity sharing schemes

'Local electricity sharing scheme' is a broad term for any contractual structure under which locally¹ generated (or stored) electricity can be shared² between consumers within some subset of the grid.

Local electricity sharing schemes

Possible benefits:

- Network services
- Community engagement
- Improved resiliency
- Improved link between technical and financial outcomes?

High level overview

- Potentially useful for quantifying impacts of 'pseudo' embedded networks / minigrids
 - Fringe of grid areas & constrained networks
 - Optimise technologies (distributed generation, batteries, DSM etc)
 - Tariff design to drive uptake and optimise operation for all stakeholders

Electricity flows

Financial flows

- Financial calculations for each of the seven energy flows
- 'Local' tariffs
- Information from individual connection points, not parent connection point

Usage priorities

PV owner

- PV electricity first used onsite
- Excess is then distributed amongst other customers
- Then to the battery
- Then exported to the wider grid

Consumer

- Uses local solar first
- Then battery electricity
- Then from the wider grid

Model Inputs

- For each customer
 - Solar capacity (kW)
 - Battery capacity (kWh and kW)
 - Load profile (half hourly)
 - Network and retail tariffs

General

- Central solar capacity (kW)
- Central battery capacity (kWh and kW)
- Local trading tariffs
 - Local solar
 - Central battery
 - Central solar
- Unitised solar profile (half hourly)

Model Outputs

- For each customer (half hourly, energy and financial)
 - Solar export revenue
 - Solar import cost
 - Fixed daily charge
 - TUOS payments
 - DUOS payments
 - NUOS payments (TUOS + DUOS + environmental fees)
 - Variable costs (NUOS + retailer costs)
 - Central battery payments
- Utilities
 - TNSP revenue
 - DNSP revenue
 - Retailer revenue
 - Battery revenue

Enova case study

Enova Case Study: Impact of Battery

Peak Solar Export Day

Enova Case Study: Impact of Battery

Enova Case Study: Battery Sizing

Network Use - Varying Scenarios

Enova Case Study: Financial Modelling

Financial Outcomes for Stakeholder Groups - Varying Scenarios

Proposed developments

- Response to price signal rather than priority order
 - e.g. if it's cheaper to buy grid electricity than local solar (such as on TOU off peak) then buy grid electricity
- Expand tariff capabilities
 - Demand network tariffs
 - Adjust tariff values
 - Ability to 'create' tariffs
 - Reference a greater data base
 - International tariffs?
- Ability to apply 'parent connection point' tariff
- Simple financial model for central battery and solar

Thank you! Q&A

